A NOTE ON NORDHAUS-GADDUM-TYPE INEQUALITIES FOR THE AUTOMORPHIC \mathcal{H}-CHROMATIC INDEX OF GRAPHS *

AUTHORS INFO

Beatrice Ruini,
Università di Modena e Reggio Emilia,
Dipartimento di Scienze Fisiche, Informatiche e Matematiche,
Via Campi 213/A, 41125 Modena, Italy.

E-mail: beatrice.ruini@unimore.it

*Research performed within the activity of INdAM-GNSAGA with the financial support of the Italian Ministry MIUR, project “Combinatorial Designs, Graphs and their Applications”.

ARTICLE INFO

J. Graph Label. 2(1) (2016), 1-8.

Article History :

AMS MSC: 05C15, 05C25, 05E18.
Received : 21.08.2015
Received in revised form : 24.10.2015
Accepted : 10.11.2015
Available online : 15.12.2015

Keywords: Nordhaus-Gaddum-type inequalities, automorphism, automorphic chromatic index.

JOURNAL INFO

ESTD: 2015
ISSN (Print) : 2454-4515
ISSN (Online) : 2454-7735
Abstracting and Indexing: Zentralblatt MATH.
Abstract

The automorphic H-chromatic index of a graph G is the minimum integer m for which G has a proper edge-coloring with m colors which is preserved by a given automorphism group H of G. We consider the sum and the product of the automorphic H-chromatic index of a graph and its complement. We prove upper and lower bounds in terms of the order of the graph when H is chosen to be either a cyclic group of prime order or a group of order four.

1 Introduction

All graphs under consideration are simple. For graph terminology and notation we refer to [6]. Let $G = (V, E)$ be a graph of order n with vertex set V and edge set E. The complement \bar{G} of a graph G is the graph whose vertex set is that of G and in which two vertices are adjacent if and only if they are not adjacent in G. Let $k \geq 2$ be an integer. Following [7] we define a k-decomposition of a graph G_0 as a family (G_1, G_2, \ldots, G_k) of spanning subgraphs of G_0 such that each edge of G_0 is contained in exactly one member of (G_1, G_2, \ldots, G_k), see also [3]. We shall occasionally refer to the subgraphs G_1, G_2, \ldots, G_k as being the “blocks” of the k-decomposition.

The following two problems can be formulated for an arbitrary graph parameter P:

(1) finding upper and lower bounds of the set
\[\{ P(G_1) + \cdots + P(G_k) : (G_1, G_2, \ldots, G_k) \text{ is a } k\text{-decomposition of } G_0 \}; \]

(2) finding upper and lower bounds of the set
\[\{ P(G_1) \cdot P(G_2) \cdots P(G_k) : (G_1, G_2, \ldots, G_k) \text{ is a } k\text{-decomposition of } G_0 \}. \]

The study of the above problems started in 1956 with the paper by Nordhaus and Gaddum [10] in the particular case $k = 2$, G_0 the complete graph K_n of order n and $P = \chi$ the chromatic number. Nordhaus and Gaddum gave answers to problems (1) and (2) in terms of the order n of $G_0 = K_n$. Only 10 years later Vizing in [11] solved the same problems for another graph parameter, namely the chromatic index $P = \chi'$.

Theorem 1.1. [11] *For an arbitrary graph G of order n the following inequalities hold:*

\[2 \left\lfloor \frac{n + 1}{2} \right\rfloor - 1 \leq \chi'(G) + \chi'(\bar{G}) \leq n + 2 \left\lfloor \frac{n - 2}{2} \right\rfloor, \]