A NOTE ON NORDHAUS-GADDUM-TYPE INEQUALITIES FOR
THE AUTOMORPHIC \mathcal{H}-CHROMATIC INDEX OF GRAPHS

AUTHORS INFO

Beatrice Ruini,
Università di Modena e Reggio Emilia,
Dipartimento di Scienze Fisiche, Informatiche e Matematiche,
Via Campi 213/A, 41125 Modena, Italy.

E-mail: beatrice.ruini@unimore.it

*Research performed within the activity of INdAM-GNSAGA with the financial support of the Italian Ministry MIUR, project “Combinatorial Designs, Graphs and their Applications”.

ARTICLE INFO

J. Graph Label. 2(1) (2016), 1-8.

Article History:
AMS MSC: 05C15, 05C25, 05E18.
Received : 21.08.2015
Received in revised form : 24.10.2015
Accepted : 10.11.2015
Available online : 15.12.2015

Keywords: Nordhaus-Gaddum-type inequalities, automorphism, automorphic chromatic index.

JOURNAL INFO

ESTD: 2015
ISSN (Print) : 2454-4515
ISSN (Online) : 2454-7735
Abstrating and Indexing: Zentralblatt MATH.
Abstract

The automorphic H-chromatic index of a graph G is the minimum integer m for which G has a proper edge-coloring with m colors which is preserved by a given automorphism group H of G. We consider the sum and the product of the automorphic H-chromatic index of a graph and its complement. We prove upper and lower bounds in terms of the order of the graph when H is chosen to be either a cyclic group of prime order or a group of order four.

1 Introduction

All graphs under consideration are simple. For graph terminology and notation we refer to [6]. Let $G = (V,E)$ be a graph of order n with vertex set V and edge set E. The complement \bar{G} of a graph G is the graph whose vertex set is that of G and in which two vertices are adjacent if and only if they are not adjacent in G. Let $k \geq 2$ be an integer. Following [7] we define a k-decomposition of a graph G_0 as a family (G_1, G_2, \ldots, G_k) of spanning subgraphs of G_0 such that each edge of G_0 is contained in exactly one member of (G_1, G_2, \ldots, G_k), see also [3]. We shall occasionally refer to the subgraphs G_1, G_2, \ldots, G_k as being the “blocks” of the k-decomposition.

The following two problems can be formulated for an arbitrary graph parameter P:

(1) finding upper and lower bounds of the set

$$\{P(G_1) + \cdots + P(G_k) : (G_1, G_2, \ldots, G_k) \text{ is a } k\text{-decomposition of } G_0\};$$

(2) finding upper and lower bounds of the set

$$\{P(G_1) \cdot P(G_2) \cdots P(G_k) : (G_1, G_2, \ldots, G_k) \text{ is a } k\text{-decomposition of } G_0\}.$$

The study of the above problems started in 1956 with the paper by Nordhaus and Gaddum [10] in the particular case $k = 2$, G_0 the complete graph K_n of order n and $P = \chi$ the chromatic number. Nordhaus and Gaddum gave answers to problems (1) and (2) in terms of the order n of $G_0 = K_n$. Only 10 years later Vizing in [11] solved the same problems for another graph parameter, namely the chromatic index $P = \chi'$.

Theorem 1.1. [11] For an arbitrary graph G of order n the following inequalities hold:

$$2 \left\lceil \frac{n+1}{2} \right\rceil - 1 \leq \chi'(G) + \chi'(\bar{G}) \leq n + 2 \left\lfloor \frac{n-2}{2} \right\rfloor,$$
Theorem 1.1 was independently proved by Alavi and Behzard in [1] and by Capobianco and Molluzzo in [5]. This type of result, called Nordhaus-Gaddum-type inequalities, have been studied for several different graph parameters. We refer to [2] for a recent survey on Nordhaus-Gaddum-type inequalities. In particular in [2, Sec.3.6] Nordhaus-Gaddum-type inequalities can be found for several chromatic graph parameters, for example, the total chromatic number.

In this paper we consider Nordhaus-Gaddum-type inequalities for a particular chromatic graph parameter: the automorphic chromatic index. Let $\phi : E \rightarrow C$ be an edge-coloring of a graph G with color set C. An automorphism σ of G preserves ϕ if there exists a permutation a of the color-set C such that the relation $\phi \sigma(e) = a \phi(e)$ holds for each $e \in E$. Denote by $\text{Aut}(G)$ the full automorphism group of a graph G and by H a given subgroup of $\text{Aut}(G)$. The automorphic H-chromatic index of G, as defined in [8] and denoted by $\chi'_{H}(G)$, is the minimum integer m for which G has a proper edge-coloring with m colors preserved by each automorphism of the subgroup H.

Upper bounds for $\chi'_{H}(G)$ in terms of the chromatic index $\chi'(G)$ are established in [8] and [9] when H is either a cyclic group of prime order or a group of order four. We recall these results which shall be used in Section 3.

Proposition 1.2. [8] Let G be a graph with chromatic index $\chi'(G)$ and assume that H is cyclic of order 2. Then the inequality holds:

$$\chi'_{H}(G) \leq \chi'(G) + \frac{\chi'(G)}{2}.$$

Let σ be an automorphism of G of odd prime order p. A σ-cycle is a cycle of G of length p which is preserved by σ while none of its vertices is fixed by σ.

Proposition 1.3. [8] Let G be a graph with chromatic index $\chi'(G)$ and assume that H is cyclic of odd prime order p and generated by σ. Then the inequality holds:

$$\chi'_{H}(G) \leq \chi'(G) + p \left\lceil \frac{\chi'(G)}{p} \right\rceil$$

provided that G has either no σ-cycles or maximum degree not divisible by p.

Proposition 1.4. [9] Let G be a graph with chromatic index $\chi'(G)$ and assume that H is the Klein group. Then the inequality holds:

$$\chi'_{H}(G) \leq \chi'(G) + 6 \left\lceil \frac{\chi'(G)}{2} \right\rceil + 4 \left\lceil \frac{\chi'(G)}{4} \right\rceil.$$
Proposition 1.5. [9] Let G be a graph with chromatic index $\chi'(G)$ and assume that \mathcal{H} is cyclic of order four. Then the inequality holds:

$$\chi'_{\mathcal{H}}(G) \leq \chi'(G) + 2 \left\lceil \frac{\chi'(G)}{2} \right\rceil + 4 \left\lceil \frac{\chi'(G)}{2} \right\rceil.$$

All the above described bounds, with the exception of one, are best possible (see [8] and [9]). In this note the main purpose is to find Nordhaus-Gaddum-type inequalities for the \mathcal{H}-automorphic chromatic index of a graph G with \mathcal{H} either a cyclic group of prime order or a cyclic group of order four.

2 Some general bounds

In this section a result is shown in analogy to [3, Theorem 4.9 p. 27].

Definition 2.1. Let (G_1, G_2, \ldots, G_k) be a k-decomposition of a graph G_0 and \mathcal{H} a subgroup of $\text{Aut}(G_0)$. The k-decomposition (G_1, G_2, \ldots, G_k) is said to be blockwise fixed by \mathcal{H} if $G_h^i = G_i$ holds for $h \in \mathcal{H}$ and $i = 1, 2, \ldots, k$.

In what follows we shall omit the word blockwise and we denote by \mathcal{H}_i the automorphism group of G_i induced by \mathcal{H} on G_i for $i = 1, 2, \ldots, k$.

Lemma 2.2. Let (G_1, G_2, \ldots, G_k) be a k-decomposition of G_0 which is fixed by \mathcal{H}, $\mathcal{H} \leq \text{Aut}(G_0)$. Then,

$$\chi'_{\mathcal{H}}(G_0) \leq \chi'_{\mathcal{H}_1}(G_1) + \chi'_{\mathcal{H}_2}(G_2) + \cdots + \chi'_{\mathcal{H}_k}(G_k).$$

Proof. For $i = 1, 2, \ldots, k$, let $m_i = \chi'_{\mathcal{H}_i}(G_i)$ be and let ϕ_i be an edge-coloring of G_i with colors C_i preserved by \mathcal{H}_i such that $|C_i| = m_i$ and $C_i \cap C_j = \emptyset$ for $i \neq j$. Each edge of G_0 is contained in exactly one member of (G_1, G_2, \ldots, G_k). If an edge e of G_0 belongs to G_i then we color it with $\phi_i(e)$. Therefore an edge-coloring of G with $(m_1 + m_2 + \cdots + m_k)$ colors is obtained which is preserved by \mathcal{H} by construction. Obviously we have the following inequality

$$\chi'_{\mathcal{H}}(G_0) \leq m_1 + m_2 + \cdots + m_k = \chi'_{\mathcal{H}_1}(G_1) + \chi'_{\mathcal{H}_2}(G_2) + \cdots + \chi'_{\mathcal{H}_k}(G_k),$$

and the statement follows. \hfill \Box

Proposition 2.3. Let n and k be positive integers and (G_1, G_2, \ldots, G_k) be a k-decomposition of K_n which is fixed by \mathcal{H}, $\mathcal{H} \leq \text{Aut}(K_n)$. Then,

$$2 \left\lceil \frac{n+1}{2} \right\rceil - 1 \leq \chi'_{\mathcal{H}_1}(G_1) + \chi'_{\mathcal{H}_2}(G_2) + \cdots + \chi'_{\mathcal{H}_k}(G_k).$$
Proof. Since $\chi'(K_n) = 2\left\lceil \frac{n+1}{2} \right\rceil - 1$ and $\chi'(K_n) \leq \chi'_H(K_n)$, Lemma 2.2 implies the statement. This lower bound is the best possible: if H is the identity group and $G_1 = K_n$, then $\chi'_H(G_i)$ coincides with $\chi'(G_i)$. Hence, we get $\chi'_H(G_1) = 2\left\lceil \frac{n+1}{2} \right\rceil - 1$ and $\chi'_H(G_i) = 0$ for $i \neq 1$. \hfill \Box

3 Some Nordhaus-Gaddum-type inequalities for the H-automorphic chromatic index

In this section G_0 will be the complete graph K_n of order n and a 2-decomposition of K_n will be denoted by (G, \bar{G}) where \bar{G} is the complement of G. The automorphism group of a graph G coincides with the automorphism group of the complement of G, [4, Theorem 1.1 p. 139], therefore, if $H \leq \text{Aut}(G)$ both $\chi'_H(G)$ and $\chi'_H(\bar{G})$ can be studied simultaneously. Proposition 2.3 in the particular case $k = 2$ implies the following:

Lemma 3.1. For an arbitrary graph G of order n with $H \leq \text{Aut}(G)$ the following inequality holds:

$$2\left\lceil \frac{n+1}{2} \right\rceil - 1 \leq \chi'_H(G) + \chi'_H(\bar{G}).$$

The above bound is best possible as shown in Proposition 2.3.

Lemma 3.2. Let G be a graph of order n. Then,

$$\left\lceil \frac{\chi'(G)}{r} \right\rceil + \left\lceil \frac{\chi'(\bar{G})}{r} \right\rceil \leq \frac{1}{r} \left(n + 2 \left\lceil \frac{(n-2)}{2} \right\rceil \right) + 2$$

where r is an integer greater than or equal to 1.

Proof. The statement follows from the following inequalities

$$\left\lceil \frac{\chi'(G)}{r} \right\rceil + \left\lceil \frac{\chi'(\bar{G})}{r} \right\rceil \leq \frac{1}{r} \left(\chi'(G) + \chi'(\bar{G}) \right) + 2 \leq \frac{1}{r} \left(n + 2 \left\lceil \frac{(n-2)}{2} \right\rceil \right) + 2$$

where the last one is obtained from Theorem 1.1. \hfill \Box

Proposition 3.3. Let G be a graph of order n with $H \leq \text{Aut}(G)$ and assume that H is cyclic of order 2. Then the following inequality holds:

$$\chi'_H(G) + \chi'_H(\bar{G}) \leq 2 \left(n + 2 \left\lceil \frac{(n-2)}{2} \right\rceil \right) + 4.$$

Proof. We get

$$\chi'_H(G) + \chi'_H(\bar{G}) \leq \chi'(G) + \chi'(\bar{G}) + 2 \left\lceil \frac{\chi'(G)}{2} \right\rceil + 2 \left\lceil \frac{\chi'(\bar{G})}{2} \right\rceil.$$
\[\leq n + 2 \left(\frac{(n-2)}{2} \right) + 2 \left(\frac{1}{2} \left(n + 2 \left(\frac{(n-2)}{2} \right) \right) + 2 \right) \leq 2 \left(n + 2 \left(\frac{(n-2)}{2} \right) \right) + 4 \]

where the first of the above relations is obtained from Proposition 1.2, while the second one from Theorem 1.1 and Lemma 3.2. \(\square \)

Proposition 3.4. Let \(G \) be a graph of order \(n \), with \(\mathcal{H} \leq \text{Aut}(G) \). Assume that \(\mathcal{H} \) is cyclic of odd prime order \(p \) and generated by \(\sigma \). The following inequalities hold:

\[p \leq \chi'_{\mathcal{H}}(G) + \chi'_{\mathcal{H}}(\bar{G}) \leq 2 \left(n + 2 \left(\frac{(n-2)}{2} \right) \right) + 2p \]

provided that \(G \) does not contain \(\sigma \)-cycles and \(\bar{G} \) has maximum degree not divisible by \(p \).

Proof. From Proposition 1.3, Theorem 1.1 and Lemma 3.2 we have

\[\chi'_{\mathcal{H}}(G) + \chi'_{\mathcal{H}}(\bar{G}) \leq \chi'(G) + \chi'(\bar{G}) + p \left\lfloor \frac{\chi'(G)}{p} \right\rfloor + p \left\lfloor \frac{\chi'(\bar{G})}{p} \right\rfloor \]

\[\leq n + 2 \left(\frac{(n-2)}{2} \right) + p \left(\frac{1}{p} \left(n + 2 \left(\frac{(n-2)}{2} \right) \right) + 2 \right) \]

\[\leq 2 \left(n + 2 \left(\frac{(n-2)}{2} \right) \right) + 2p. \]

Hence, the upper bound is proved.

In \(G \) there exist \(p \) vertices \(v_0, v_1, \ldots, v_{p-1} \) such that \(\sigma(v_i) = v_{i+1} \), where the indices are taken modulo \(p \). Since \(G \) has no \(\sigma \)-cycles, then \(C = v_0v_1\ldots v_{p-1}v_0 \) is a cycle in \(G \). In order to have an edge-coloring of \(G \) preserved by \(\sigma \), the edges of the cycle \(C \) must be colored with \(p \) different colors. Therefore \(\chi'_{\mathcal{H}}(\bar{G}) \geq p \) and the lower bound is shown.

We now prove that the lower bound is best possible. Using the cyclic group \(\mathbb{Z}_p \) of rotations of the \(p \)-gon, let \(\bar{G} = \bar{K}_p \) be with \(\bar{V}(\bar{G}) = \mathbb{Z}_p = \{ 0, 1, \ldots, p-1 \} \), \(\sigma(i) = i + 1 \), (the indices are taken modulo \(p \)) and \(G \) the null graph of order \(p \). The “standard” edge-coloring of \(K_p \) with \(p \) colors and with all the edges of the near 1-factor \(F_i = \{ \{ i+j, i-j \} : j \in \mathbb{Z}_p \setminus \{ 0 \} \} \) colored by the color \(i \) (\(i = 0, 1, \ldots, p-1 \)), is obviously preserved by \(\sigma \). Hence, \(p = \chi'(\bar{G}) \leq \chi'_{\mathcal{H}}(\bar{G}) \leq p \). Therefore, \(\chi'_{\mathcal{H}}(\bar{G}) = p \) and the lower bound is attained. \(\square \)

In analogy to the above propositions, Proposition 1.4 and Proposition 1.5 imply the following propositions.

Proposition 3.5. Let \(G \) be a graph of order \(n \) with \(\mathcal{H} \leq \text{Aut}(G) \). Assume that \(\mathcal{H} \) is the Klein group, then the following inequality holds:

\[\chi'_{\mathcal{H}}(G) + \chi'_{\mathcal{H}}(\bar{G}) \leq 5 \left(n + 2 \left(\frac{(n-2)}{2} \right) \right) + 20. \]
Proposition 3.6. Let G be a graph of order n with $\mathcal{H} \leq \text{Aut}(G)$. Assume that \mathcal{H} is cyclic of order 4, then the following inequality holds:

$$\chi'_\mathcal{H}(G) + \chi'_\mathcal{H}(\bar{G}) \leq 4 \left(n + 2 \left\lfloor \frac{n-2}{2} \right\rfloor \right) + 12.$$

Note that if $G = K_n$ then \bar{G} is the null graph with $\chi'_\mathcal{H}(\bar{G}) = 0$, hence $0 \leq \chi'_\mathcal{H}(G) \chi'_\mathcal{H}(\bar{G})$. Since

$$\chi'_\mathcal{H}(G) \chi'_\mathcal{H}(\bar{G}) = \left(\sqrt{\chi'_\mathcal{H}(G) \chi'_\mathcal{H}(\bar{G})} \right)^2 \leq \left(\frac{\chi'_\mathcal{H}(G) + \chi'_\mathcal{H}(\bar{G})}{2} \right)^2$$

then by Propositions 3.3, 3.4, 3.5 and 3.6 we obtain the following:

Proposition 3.7. Let G be a graph of order n with $\mathcal{H} \leq \text{Aut}(G)$. Assume \mathcal{H} cyclic of order 2, then the following inequalities hold:

$$0 \leq \chi'_\mathcal{H}(G) \chi'_\mathcal{H}(\bar{G}) \leq \left(n + 2 \left\lfloor \frac{n-2}{2} \right\rfloor + 2 \right)^2.$$

Proposition 3.8. Let G be a graph of order n with $\mathcal{H} \leq \text{Aut}(G)$. Assume that \mathcal{H} is cyclic of odd prime order p and generated by σ. Then the following inequalities hold:

$$0 \leq \chi'_\mathcal{H}(G) \chi'_\mathcal{H}(\bar{G}) \leq \left(n + 2 \left\lfloor \frac{n-2}{2} \right\rfloor + p \right)^2.$$

provided that G does not contain σ-cycles and the maximum degree of \bar{G} is not divisible by p.

Proposition 3.9. Let G be a graph of order n with $\mathcal{H} \leq \text{Aut}(G)$. Assume that \mathcal{H} is the Klein group, then the following inequalities hold:

$$0 \leq \chi'_\mathcal{H}(G) \chi'_\mathcal{H}(\bar{G}) \leq \left(\frac{5}{2} \left(n + 2 \left\lfloor \frac{n-2}{2} \right\rfloor \right) + 10 \right)^2.$$

Proposition 3.10. Let G be a graph of order n with $\mathcal{H} \leq \text{Aut}(G)$. Assume that \mathcal{H} is cyclic of order 4, then the following inequalities hold:

$$0 \leq \chi'_\mathcal{H}(G) \chi'_\mathcal{H}(\bar{G}) \leq \left(2n + 4 \left\lfloor \frac{n-2}{2} \right\rfloor + 6 \right)^2.$$

It remains an open problem to verify if some of the above bounds are sharp.

Acknowledgments.

The author wishes to thank the anonymous referees for their thoughtful and thorough comments which aided in the exhibition of this paper.

References

